
Assignment 4: Dodo gets smarter

Algorithmic Thinking and Structured Programming (in Greenfoot)
© 2017 Renske Smetsers-Weeda & Sjaak Smetsers1

Contents
Introduction 1

Learning objectives 1

Instructions 1

Theory 24.1 Variable Plan . 24.2 Operators . 54.3 Tracing variables . 64.4 The Swap Plan . 74.5 Sentinel-controlled Loop Plan . 84.6 Generic strategies . 84.7 The Count Plan . 94.8 Counter-controlled Loop Plan . 10
Challenges 124.1 Tracing code . 124.2 Swapping egg names . 144.3 Turn facing East . 144.4 Turn facing East using a while . 144.5 Go to a location . 154.6 Counters and while . 164.7 Number of steps until the edge of the world . 174.8 Counting number of eggs in a row . 184.9 Lay a trail of 6 eggs . 184.10 Lay a trail of 6 eggs, moving only 6 steps . 194.11 Lay a trail of n eggs . 194.12 Lay a trail of n eggs, check for valid input . 20
Reflection 21

1Licensed under the Creative Commons Attribution 4.0 license: https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Dodo gets smarter Assignment 4

Saving and Handing in 22

Algorithmic thinking and structured programming (in Greenfoot) 2

Dodo gets smarter Assignment 4

Introduction
When Mimi runs into a difficult problem, her first step is to make a plan. Having a plan makes Mimifeel stronger. There are plans for all types of things, like using variables, counting, looping, swappingthingsOne of those plans is having a ’memory’. Obviously, for Mimi to count her eggs, she has to be ableto remember a number. We’re going to use variables to store information. We’re going to make Mimismarter! By making Mimi smarter, we can also get her do more complex (composite) tasks.In the following challenges we will teach (i.e. program) Mimi to do all kinds of things. It is importantto make Mimi as smart as possible. We will teach her to do flflnew things, but want her to be able to dothose in any similar situation she is faced with in the future. So, we’re focussing on generic solutionsfor the problems she runs into.
This assignment’s goal are:

• Learn to use variables

• Come up with generic algorithms which can be used as a solution to multiple problems

Learning objectives
After completing this assignment, you will be able to:

• explain what variables are used for;
• declare and initialize variables and reassign values (apply the Variable Plan);
• analyse code and trace variables using a tracing table.
• use the assignment operator ’=’;
• use the comparison operators ’==’, ’!=’, ’<’, ’<=’, ’>’ and ’>=’;
• use the arithmetic operators ’+, ’-’, ’*’, and ’/’;
• use the incrementing operator ’++’ (and decrementing operator ’−−’);
• recognize and apply plans for counting, repeating tasks and swapping values;
• use a counter to control loop execution (apply the counter-controlled loop plan);
• use a conditional statement to control loop execution (apply the sentinel-controlled loop plan);
• understand how methods use parameters;
• guard for unexpected values.

Instructions
In this assignment you will carry on with your code from the previous assignment. Make a copy of thatscenario to continue working with. To make a copy follow the next steps:

• Open your scenario from the previous assignment.
• In the Greenfoot menu at the top of the screen, select ’Scenario’ and then ’Save As ...’.
• Check that the window opens in the folder where you want to save your work.

Algorithmic thinking and structured programming (in Greenfoot) 1

Dodo gets smarter Assignment 4

• Choose a file name containing your own name(s) and the current assignment number, for example:
Asgmt4_John .

Note: We recommend that you to continue working with your own code. If it is absolutely impossibleto carry on working with your own code from the previous assignment, then you may download a newscenario from the course website2.
Throughout the assignment you will also need to answer some questions. The following must behanded in:
• All flowcharts: use pencil and paper, or go to https://www.draw.io/;
• Your code: the file MyDodo . jav contains all your code and must be handed in;
• The reflection sheet: complete and hand it in.
You must discuss all other answers with a programming partner. Jot down a short answer on (theassignment) paper.

There are three types of challenges:
Recommended. Students who need more practice or with limited programming experienceshould complete all of these.
Mandatory. Everyone must complete these.
Excelling. More inquisitive tasks, designed for students who completed 2 star tasks and areready for a bigger challenge.Students who skip 1-star challenges should complete all 3-star challenges.

A note in advance:

• In this assignment you may only make changes to the MyDodo class;
• You may use methods from the MyDodo or Dodo class, not from the Actor class;
• Teleportation is not permitted: if Mimi needs to get somewhere, she must walk there!

Theory

Theory 4.1: Variable Plan
A variables is used to store information. In order to use variables, these must first be:

1. Declared: given a name and a type.
• Type: such as int, boolean , String , or, as we shall see later on, a class or another object. Thevariable type describes what type of a value a variable can store.
• Name: for example Mimi, or nrOfEggs .

2. Initialized: given an initial3 value which can be changed later.
Before you can use a variable, it must be created. This is called a declaration:

2http://course.cs.ru.nl/greenfoot/3It is good programming practice to always give a variable an initial value. In Java this is not mandatory.

Algorithmic thinking and structured programming (in Greenfoot) 2

https://www.draw.io/
http://course.cs.ru.nl/greenfoot/

Dodo gets smarter Assignment 4

Usually, at the same time, you will assign it a value. This is called initialization:

Variable Types and declaration

Type Meaning Example variable declaration Example variable use
int Integer: whole number int nrOfEggsHatched = 2 if (nrOfEggsHatched == 12) ...
boolean True or False boolean doneLookingForEgg = false if (doneLookingForEgg) ...
String Text String name = "Mimi" showCompliment (name);

Assigning a value
To assign a value to a variable you must use ’=’. The ’=’ sign means ’becomes’.

Figure 1: The variable nrOfEggs becomes 50
The variable and the value must be the same type. This means that the type of the variable on the left-hand-side of the ’=’ should be the same as the type of the value on the right-hand-side. The types in theexample above are the same:

• the left-hand-side: nrOfEggs has been declared as an int,
• the right-hand-side: ”50” is an int.

Using a variable
What you can do with a variable (which operations you can use) depends on its type. For example,variables which store a text (or String) can be ’stuck together’ (or concatenated). Numerical values(such as int) can be compared, multiplied, added, incremented . . .Examples are:

• nrOfDozens = nrOfEggs / 12;the variable nrOfDozens is assigned the value of nrOfEggs divided by 12. Note: the division that isused here is called an integer division, that is to say that the result is an integer (whole number)and any remainder will be thrown away.

Algorithmic thinking and structured programming (in Greenfoot) 3

Dodo gets smarter Assignment 4

• nrOfEggs = nrOfEggs + 1;the variable nrOfEggs is incremented by 1 (for example, when Mimi lays another egg);
• nrOfEggs = nrOfEggs ++;the variable nrOfEggs is incremented by 1 (same as above);
• totalNrOfEggs += nrNewEggsFound ;same as: totalNrOfEggs = totalNrOfEggs + nrNewEggsFound ;

Note:

• When declaring a variable, indicate its type. When using (the value of) a variable, you don’t referto its type.4
• A variable can also be passed to a method as a parameter. For example in the following methodcall: layNrOfEggs (nrOfEggs); Here, in the method call of layNrOfEggs , the variable nrOfEggsis passed as a parameter. Based on this parameter, Mimi knows how many eggs she must lay.

Naming conventions for a variable
The name of a variable:

• is meaningful: it corresponds to what the variable means (one exception: the name of a countervariable in a loop may be one letter, such as i);
• consists of one or more nouns;
• is written in lowerCaseCamel: it starts with a lowercase letter, an each subsequent ’word’ startswith a capital letter;
• consists of letters and numbers: it does not contain spaces, commas, or other ’strange’ characters(one exception: ’ ’ may be used);
• for example: nrEggsFound .

Life span
A variable that is created inside a method declaration exists only for that particular method. After themethod is executed, the variable is destroyed. Thus, these variables have a limited life span (also calledscope). A variable’s life begins where it is declared and ends when the method stops.5The Greenfoot editor helps you recognize the life span by using different background colors. Forexample, in the picture below you can see that the scope of the int stepsTaken variable is limited tothe white area and all areas that are enclosed by the white area in which is declared, in this case thepink area.

4This is just like when you call a method, where you don’t have to repeat the entire signature of the method. Moreover, Javadoes not even allow you to do so.5Actually Java’s scope rules are somewhat more complicated, but for the time being we’ll keep it as simple as possible

Algorithmic thinking and structured programming (in Greenfoot) 4

Dodo gets smarter Assignment 4

Parameters also have a life span: this is limited to the body of a method (or constructor). For example,in the picture below you can see that the scope of the int nrStepsToTake parameter is limited to thewhite area of the method (and the enclosed pink area).

Variables that are declared in a class (outside of a method and thus not within a particular method)exist as long as the object exists (you will learn more about this in the next assignment).
Example
We write a method which squares a number (given as parameter):
/**

* This method returns the square of a given number

*/

public int square (int number){
int result = 0 ; // declare and initialize the result variable

result = number*number ; // assign a value to result: the (parameter) number squared

return result ; // the method returns the result after squaring

}

Note:

A variable that is declared in a method (and thus can only be used within that method) is called a localvariable. In this example, int result is a local variable because it has been declared in the method
square . In addition, the parameter int number can only be used within this method.
Theory 4.2: Operators

Assignment operator
The ’=’ operator assigns (gives) a value to a variable. For example:

Statement Result values
int nrOfEggsInNest = 4; nrOfEggsInNest has the value 4
int nrOfEggsEatenBySnake = nrOfEggsInNest nrOfEggsEatenBySnake is 4 and nrOfEggsInNest is 4

Note:

Using variables to assign values copies the value. In the example above nrOfEggsEatenBySnake gets thevalue 4, but the nrOfEggsInNest is also still 4.

Algorithmic thinking and structured programming (in Greenfoot) 5

Dodo gets smarter Assignment 4

Comparison operators
The following operators compare numerical values:

Operator Meaning Example== is equal to number == 4!= is NOT equal to number1 != number2

> is larger than number > 3
>= is larger or equal to number1 >= number2

< is smaller than 5 < number

<= is smaller or equal to number <= 5The result of a comparison is always a boolean (thus, true or false).

Arithmetic operators
The following operators perform arithmetic operations on numerical values:

Operator Meaning Example+ addition result = 4 + number ;
− subtraction result = number − 4;* multiplication result = 5 * number ;/ division result = number / 5;

Increment and decrement operators
The following operators increase or decrease the value of a variable by one:

Operator Meaning Example++ increase by one result ++;
−− decrease by one result −−;

Example
• Initialization: Assume Mimi has found 4 eggs, then the following statement declares and initial-izes the variable: int nrEggsFound = 4;
• Addition operator: If she then finds another two eggs, then the following statement increases thevalue of nrEggsFound by two: nrEggsFound = nrEggsFound + 2;
• Decrement: And if she loses an egg, the following statement decreases the value by one: nrEggsFound−−;

The above operations change the value of a variable. To check whether Mimi now has five eggs, we usethe following boolean expression: nrEggsFound == 5. This is indeed true.
Theory 4.3: Tracing variables
Keeping track of variables and reviewing their values at certain points in a program is called tracing.Tracing is a useful skill for detecting errors in code.
Example:
We will now trace the variables number1 , number2 and number3 using the following code:

Algorithmic thinking and structured programming (in Greenfoot) 6

Dodo gets smarter Assignment 4

Figure 2: Code to practice tracing
A tracing table is used to keep track of each variable’s value after executing each line of code:

Value after executing the statement
Statement a b c

int a = 2; 2 - -
int b = 3; 2 3 -
int c = a * b ; 2 3 6
b = c − a ; 2 4 6
a = a + b + c ; 12 4 6
c = b * a ; 12 4 48Note: ’-’ indicates that the variable has not yet been declared or initialized. At the end of the program,the value of number1 is equal to 12, the value of number2 is equal to 4, and the value of number3 is equalto 48.

Theory 4.4: The Swap Plan
To swap the values of two variables (called a triangular swap plan, you need an additional temporary’helper’ variable.
Example:
The goal is to swap the values of two eggs. A blue egg is worth 2 points, and a golden egg is worth 10points. These values are stored in the variables blueEggValue and goldenEggValue , respectively. Bothvariables are of type int. This is how the swapping is done:

1. The temporaryEggValue gets the value of the blueEggValue ;
2. The blueEggValue gets the value of the goldenEggValue ;
3. The goldenEggValue gets the value of the temporaryEggValue ;

Algorithmic thinking and structured programming (in Greenfoot) 7

Dodo gets smarter Assignment 4

Figure 3: Plan for swapping values of two variables
Value after executing the statement

Statement blueEggValue goldenEggValue temporaryEggValueintial values 2 10 -
temporaryEggValue = blueEggValue ; 2 10 2
blueEggValue = goldenEggValue ; 10 10 2

goldenEggValue = temporaryEggValue ; 10 2 2
Note:
You may want to try this with files. Open your file explorer. Make a file ”A.txt” and a file ”B.txt” eachcontaining a different text, for example by using Notepad. Now, by means of only copying files, try toswitch the files around.
Theory 4.5: Sentinel-controlled Loop Plan
A sentinel can be used to determine when a loop is to stop being executed. As long as a particular con-dition is not met, the loop is repeated. This is called a sentinel-controlled loop plan.

Example:
As a concrete example, let’s have a look at MyDodo ’s code for void walkToWorldEdge () .As long as the sentinel ! borderAhead () is true, the loop is repeated and Mimi takes a step.

Figure 4: Flowchart for sentinel controlled loop plan
When the sentinel value is reached, the loop is not executed again.

Theory 4.6: Generic strategies
Programs that are generic can be used as a solution to more problems. Choosing appropriate and generalboundaries can make your solution applicable to more solutions. For example, in a world with a differentsize.

Algorithmic thinking and structured programming (in Greenfoot) 8

Dodo gets smarter Assignment 4

Avoid using hard-coded values such as ’12’. Instead, determine the boundary values by:
• using a sentinel such as borderAhead () or
• calculating the number of rows nrOfRowsInWorld as follows:
World world = getWorld () ; // gets world to determine world height

int nrOfRowsInWorld = world . getHeight () ; // stores world height in nrOfRowsInWorld

• using parameters as input for an method. A method which depends on parameters is more flexiblethan one that doesn’t. The parameter is used to determine specific values, such as how often (partof) an algorithm should be repeated. One method can be used to solve multiple similar problems.For example, Mimi can use the method void jump (int distance) to jump several distances,depending on the parameter it is given. On the other hand, using void move () , Mimi can merelytake one step.

Figure 5: Using a parameter distance for a generic method

Theory 4.7: The Count Plan
A counter is a variable that is used to keep track of how often something happens. For example, avariable can be used to count how often the code in a while loop is executed. A Count Plan has thefollowing structure:

• Initialize a counter variable (usually to 0);
• Inside the loop, modify the counter variable (usually increment);
• At the end of the method, return the counter variable.

Figure 6: Flowchart framework for Count Plan

Algorithmic thinking and structured programming (in Greenfoot) 9

Dodo gets smarter Assignment 4

Figure 7: Code framework for the Count Plan

Theory 4.8: Counter-controlled Loop Plan
The counter can also be used in the loop’s condition to determine how often the loop should be exe-cuted. That way, you know when you’re done looping. Even during the last repetition, all the code inthe loop will be executed (it will never stop half-way through a loop). This is called a counter-controlledloop plan.

Example:
As a concrete example, let’s have a look at MyDodo ’s code for void jump (int distance) (see figures 8and 9). This method makes Mimi take steps repeatedly until the the required distance has been reached.A counter (nrStepsTaken)is used to keep track of how many steps Mimi has taken. With each step, thecounter in incremented (increased by 1). As long as the counter hasn’t reached the required distance,the loop is executed again. When the counter (nrStepsTaken) is equal to the required number of steps(distance), the method ends.

Figure 8: Flowchart for jump method

Algorithmic thinking and structured programming (in Greenfoot) 10

Dodo gets smarter Assignment 4

Figure 9: Code for jump method
Note:
Three common mistakes or misconceptions are:

• to forget to increment the counter in the loop. Then the program will never come out of the loopand will repeat for ever.
• to use the incorrect comparison operator in the condition. If counter is set to 0, the ’<’ comparisonoperator must be used instead of ’<=’.
• to think that the method ends as soon as the counter is incremented to the desired value. On thelast pass, all the code in the while loop will be executed. Then, when the conditional expressionis checked again, the method will end.

Algorithmic thinking and structured programming (in Greenfoot) 11

Dodo gets smarter Assignment 4

Challenges

Please read Theory 4.1: Variable Plan.

Please read Theory 4.2: Operators.

Please read Theory 4.3: Tracing variables.

Please read Theory 4.4: The Swap Plan.

Challenge 4.1: Tracing code
In the following exercises we will practice using variables and operators. You can use Greenfoot tocheck your answers, see the example code in figure 10

Figure 10: Code to practice tracing
a) What does the value of int nrOfEggsFound become? Match the code for A,B,C,D to the value of

intNrEggsFound after code execution:
Question CodeA int nrOfEggsFound = 3;

nrOfEggsFound ++;B int nrOfEggsFound = 2;
nrOfEggsFound = nrOfEggsFound + 4;C int nrOfEggsFound = 1;
nrOfEggsFound −−;D int nrOfEggsFound = 1;
nrOfEggsFound +=2;

nrOfEggsFound02346

b) What do the values of int number1 and int number2 become?
int number1 = 2;
int number2 = 4;
number1 = number1 + number2 ;
number2 = number1 + number2 ;

statement number1 number2initialization 2 4
number1 = number1 + number2 ;
number2 = number1 + number2 ;

c) After execution, the values of number1 and number2 should be equal to each other. Fill in the miss-ing pieces of code and flowchart, and fix the code.

Algorithmic thinking and structured programming (in Greenfoot) 12

Dodo gets smarter Assignment 4

int number1 = 2;
int number2 = 4;
if (???){

number1++;
} else {

number2 = number1 ;
}

d) What do the values of int number1 and int number2 become? After execution, the values of number2should be 36. If this is not the case, fix the mistake.
int number1 = 2;
int number2 = number1 * 3;
number1 = number2 ;
number2 = number1 + number1 ;

e) Fill in the tracing table for the following code snippet.
int number1 = 6;
int number2 = 3;
number1 = number2 ;
number2 = number1 ;
if (number1 == number2){

number1 = number1 + number2 ;
}

statement number1 number2initialization 6 3
number1 = number2 ;

f) What does the value of int number3 become?

Algorithmic thinking and structured programming (in Greenfoot) 13

Dodo gets smarter Assignment 4

g) What does the value of int number3 become?
int number1 = 10 ;
int number2 = 8;
int number3 = 4;
number3 = doSomethingWithTwoNrs (number1 , number2) ;

where:
public int doSomethingWithTwoNrs (int a , int b) {

int result = (a + b) / 2 ;
return result ;

}

Challenge 4.2: Swapping egg names
Mimi accidently gave her eggs the wrong names! Can you help her swap the names?

Figure 11: Dodo mixed up the names of these eggs
a) Determine a strategy to swap the names around.
b) Translate your strategy code. Tip: Having trouble getting started? Have a look at figure 12.
c) Print the values to the console to test that it works.
d) Note the final values of any variables you used.

Figure 12: First steps for writing swap plan code

Challenge 4.3: Turn facing East
Write a method void faceEast () which turns Mimi so that she faces East. Tip: You can use
getDirection ()==1 to check if Mimi is facing East.You have now learned how to compare a variable and a number.
Please read Theory 4.5: Sentinel-controlled Loop Plan.

Algorithmic thinking and structured programming (in Greenfoot) 14

Dodo gets smarter Assignment 4

Challenge 4.4: Turn facing East using a while

Write a method void faceEast () which turns Mimi so that she faces East. Make use of a while (notan if .. then .. else.You have now learned how to compare a variable and a number. Furthermore you used a while-loop torepeat steps.
Please read Theory 4.6: Generic strategies.

Challenge 4.5: Go to a location
We will now write a method void goToLocation (int coordX , int coordY) that sends Mimi to alocation with the following coordinates (coordX, coordY).

a) Come up with a suitable high-level algorithm and draw the flowchart. Determine which sub-methods you will need. Tips:
• Determine Mimi’s coordinates, and then determine how many steps in each direction shemust take to get to her destination.
• It may be useful to consider different cases individually, depending on which direction sheneeds to head. Consider describing the cases using the terms ’WEST’, ’EAST’, ’NORTH’, and’SOUTH’.
• It may be useful to have a sub-method such as boolean locationReached (int coordX , int coordY)to check if the destinations has been reached.
• Check if you can optimize your flowchart using a while.

b) Write the corresponding code. Don’t forget to add comments. Tips:
• You can use setDirection (WEST); to make Mimi face to the West (and likewise any otherdirection).
• You can use getX () and getY () to get Mimi’s coordinates.

c) Test your method by right-clicking and filling in several different values. Try boundary valuessuch as (0,0) and (11,11)? Test for invalid values such as (14,14) and (-1,-1)?
d) Adjust your program so that it deals with invalid coordinates (so called unexpected values) cor-rectly:

(a) Write a separate sub-method boolean validCoordinates (int coordX , int coordY) whichchecks if the given coordinates (the arguments) are valid (in other words: if they exist inMimi’s world).
(b) If invalid coordinates are given, show an error message using:

showError ("Invalid coordinates") ;
(c) If the input is invalid, Mimi should stay in her place (do nothing);
(d) Your program should work for any world size, not only a world with 12 by 12 cells. Tip: To getthe world’s width, first call: World world = getWorld (); and then ask its width: world . getWidth ()(see Theory 4.6).

e) Test your code modifications.
We have now seen how to use and compare variables. We also saw how to use a combination of operatorswith different parameters, variables, and numbers to build more complex conditional expressions.
Please read Theory 4.7: The Count Plan.

Algorithmic thinking and structured programming (in Greenfoot) 15

Dodo gets smarter Assignment 4

Please read Theory 4.8: Counter-controlled Loop Plan.

Challenge 4.6: Counters and while

It’s time to practice using the while loop. Just like in the first challenge (4.1), we’re going to review codeand trace how the variables change as the code runs. This is a good way to really understand how a
while loop works. That way, you’ll make less (hard to find) mistakes while coding. Have a look at thefollowing pieces of code and try to figure out what happens to the variables. Use Greenfoot to checkyour answers. Use your void practiceTracingCode () method from challenge 4.1 to run the code.

a) After running the following code, what are the values of counter and nrOfStepsToTake ? How oftendoes the method move (); get called? Does the code work correctly?
int nrOfStepsToTake = 6;
int counter = 0;
while (counter <= nrOfStepsToTake){

move () ;
counter++;

}

b) Complete the following table for each time that the code in the while is executed.
int number1 = 2;
int number2 = 5;
int counter = 0;
while (number1 <= number2){

move () ;
number1 ++;
counter ++;

}

Nr of while-loops executed Value of number1 after while Value of number2 after while012

c) Modify the following conditional expression in the while so that move () is called three times.
int number1 = 10 ;
int number2 = 8;
while (number1 > number2){

move () ;
number1−−;

}

Algorithmic thinking and structured programming (in Greenfoot) 16

Dodo gets smarter Assignment 4

d) Have a look at the method jump as described in 4.8.
(a) Add (i.e. copy-paste) the method void jump (int distance) to the MyDodo class.
(b) For each of the following, indicate how often the code in the while (of void jump (int distance))is executed:

i. if distance is equal to 5,
ii. if distance is equal to 1?

iii. if distance is equal to 0?
iv. if nrStepsTaken is equal to 3 and distance is equal to 5?

Tip: You may want to print some values in the console.
We have now seen how to use a counter variable to determine how often code (a while loop) shouldbe executed in order to get correct results.

Challenge 4.7: Number of steps until the edge of the world
In this challenge you will use a Count Plan to write a method which returns how many steps Mimi hasto take to get to the edge of the world (see Theory 4.7 for more information about the Count Plan). Thefollowing flowchart and code shows a framework for the method walkToWorldEdgeAndCountSteps ()based on the Count Plan:

Figure 13: Flowchart for counting steps to the edge of the world

Algorithmic thinking and structured programming (in Greenfoot) 17

Dodo gets smarter Assignment 4

Figure 14: Code for counting steps to the edge of the world
a) Initialize a counter variable;
b) Inside the loop, modify the counter variable (usually increment).
c) At the end of the method, return the counter variable.
d) Test your method.
e) What is the smallest value that your method can return as a result? And the largest?
We have now used a counter variable to keep track of how often a while loop has been executed. Wealso wrote a method that returns the variable so that it can be used in other parts of the code.

Challenge 4.8: Counting number of eggs in a row
Write an accessor method int countEggsInRow which makes Mimi walk to the edge of the world, counthow many eggs she finds in that row (or column) and then go back to the beginning of the row (accessormethod).

a) Choose an appropriate variable to store the number of eggs found.
b) Draw the corresponding flowchart. Return the number of eggs found as a result. Tip: The returnis the very last statement that can be called. Mimi must thus first go back to the beginning of therow, before returning the value. It may be useful to write a sub-method which makes Dodo returnto her initial position.
c) Write the code. Don’t forget to add JavaDoc comments.
d) Test your method by right-clicking. Also test with an egg in the front and the end of the row.
We have now used a variable to store information which was gathered throughout the execution ofa while loop (The Count Plan).

Challenge 4.9: Lay a trail of 6 eggs
We want to teach Mimi to leave a trail of 6 eggs. The initial and final situations are as follows:

Figure 15: Initial situation Figure 16: Final situation: Dodo has laid 6 eggs andis standing behind trail
Write a method void layTrailOf6EggsAndMove () which corresponds to the flowchart in figure 20.

Algorithmic thinking and structured programming (in Greenfoot) 18

Dodo gets smarter Assignment 4

Figure 17: Flowchart for method layTrailOfEggsAndMove ()
We have now used a counter variable (nrOfEggsLaid) to determine how often a while loop is exe-cuted.

Challenge 4.10: Lay a trail of 6 eggs, moving only 6 steps
Again (as in Challenge 4.9), we want to teach Mimi to leave a trail of 6 eggs. This time, she must end opsitting on her final egg. The initial and final situations are as follows:

Figure 18: Initial situation Figure 19: Final situation: Dodo has laid 6 eggs andis sitting on her final egg
This way, Mimi can lay a trail of eggs all the way until the border of the world. Write a method

void layTrailOf6Eggs () which corresponds to the flowchart in figure 20.

Figure 20: Flowchart for method layTrailOfEggs ()
We have now used a counter variable (nrOfEggsLaid) to determine how often a while loop is exe-cuted.

Algorithmic thinking and structured programming (in Greenfoot) 19

Dodo gets smarter Assignment 4

Challenge 4.11: Lay a trail of n eggs
We want to teach Mimi to leave a trail of n (a certain number of) eggs. This is similar to layTrailOf6Eggs ()(challenge 4.10), however, this time for any number of eggs, not just 6. Write a method called
void layTrailOfEggs (int nrOfEggsToLay) with which Mimi leaves a trail of nrOfEggsToLay eggs.In the end, she should be standing on her final egg. Add comments to your code and test your work.Don’t forget to guard for unexpected input.
Challenge 4.12: Lay a trail of n eggs, check for valid input
We want to teach Mimi to leave a trail of n (a certain number of) eggs. This is similar to layTrailOfnEggs ()(challenge 4.11), however, this time for any number of eggs, not just 6. Additionally, you must guard forinvalid input.Add comments to your code and test your work. Check that your solution works no matter whatdirection Mimi is facing.

Algorithmic thinking and structured programming (in Greenfoot) 20

Dodo gets smarter Assignment 4

Reflection
In this assignment you practiced using variables to store values. You also learned about loops and howmethods use parameters. One of the most important steps in becoming good at anything is to evaluateand reflect on what you did and how it went:
Result
I know my solution works because . . .I am proud of my solution because . . .I could improve my solution by . . .

Method
My approach was good because . . .What I could do better next time is . . .

Fill the following table with smileysindicating how things went. I can do it
I did it a bit but didn’t fully get it
I didn’t get it at all

I can use variables to store values.

I can use a trace table to analyse code.

I can apply plans for counting, repeating tasks and swapping values.

I can control how often a loop is executed using either a counter or a con-ditional statement.
I understand how to use methods that have parameters.

Algorithmic thinking and structured programming (in Greenfoot) 21

Dodo gets smarter Assignment 4

Saving and Handing in
You have just finished the assignment. Save your work! You will need this for future assignments. In theGreenfoot menu at the top of the screen, select ’Scenario’ and then ’Save’. You now have all the scenariocomponents in one folder. The folder has the name you chose when you selected ’Save As ...’.
Handing in
Hand in the following:

• Your code: The java file MyDodo . jav;
• Flowcharts: paste (photo’s of) your flowcharts in a Word document;
• The reflection sheet: complete and hand it in.

Algorithmic thinking and structured programming (in Greenfoot) 22

	Introduction
	Learning objectives
	Instructions
	Theory
	4.1 Variable Plan
	4.2 Operators
	4.3 Tracing variables
	4.4 The Swap Plan
	4.5 Sentinel-controlled Loop Plan
	4.6 Generic strategies
	4.7 The Count Plan
	4.8 Counter-controlled Loop Plan

	Challenges
	4.1 Tracing code
	4.2 Swapping egg names
	4.3 Turn facing East
	4.4 Turn facing East using a [language=Java]|while|
	4.5 Go to a location
	4.6 Counters and [language=Java]|while|
	4.7 Number of steps until the edge of the world
	4.8 Counting number of eggs in a row
	4.9 Lay a trail of 6 eggs
	4.10 Lay a trail of 6 eggs, moving only 6 steps
	4.11 Lay a trail of n eggs
	4.12 Lay a trail of n eggs, check for valid input

	Reflection
	Saving and Handing in

