
Assignment 2: Designing Dodo’s moves

Algorithmic Thinking and Structured Programming (in Greenfoot)
© 2017 Renske Smetsers-Weeda & Sjaak Smetsers1

Contents
Introduction 1

Learning objectives 1

Instructions 1

Theory 22.1 Flowcharts . 22.2 Steps for designing code . 42.3 Sequence of Instructions . 42.4 Testing (and debugging) . 52.5 Comparing . 52.6 Selections (choices) using if..then..else . 62.7 Accessor method . 62.8 Loading a world from a file . 82.9 Repetition is... boring and error-prone: wishing for a generic solution 82.10 Repetition using while . 92.11 Nesting . 9
Challenges 122.1 Sequence of instructions: gotoEgg . 122.2 A sequence with multiple instructions . 122.3 Mimi can’t walk through fences . 132.4 Writing your own sequence: climbOverFence () . 142.5 Find grain . 152.6 Repeating using while : generic gotoEgg () . 162.7 Walk to the edge of the world . 172.8 Combining sub-methods: walkToWorldEdgeClimbingOverFences () 182.9 Giving compliments . 192.10 Pick up grains and print coordinates . 19

1Licensed under the Creative Commons Attribution 4.0 license: https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Designing Dodo’s moves Assignment 2

Reflection 20

Diagnostic Test 21

Saving and Handing in 21

Algorithmic thinking and structured programming (in Greenfoot) 2

Designing Dodo’s moves Assignment 2

Introduction
Now that you have become acquainted with the the Greenfoot environment and are able to read somecode, make modifications and test them, it’s time to start writing your own code using some Java lan-guage constructs.In the following challenges you will develop your own algorithms and try them out in Greenfoot. Wewill practice working in a structured manner, by first visualising your algorithm in a flowchart, and thentranslating this into working code, step-by-step.
This assignment’s goal is: Design, implement and test solutions

Scenario
For this assignment you will use the scenario: ’DodoScenario2’. From now on, you will continue to usethe code you write in this assignment.

Learning objectives
After completing this assignment, you will be able to:

• draw a flowchart according to its quality criteria;
• devise an algorithm as a solution to a problem by identifying sequences, decisions (or selections)and repetitions required for a solution;
• reason about the correctness of an algorithm in terms of the initial and final situations;
• visualize an algorithm as a combination of a sequence, decision or a repetition in a flowchart;
• transform a flowchart into code;
• combine sub-methods to solve a (complex) problem;
• design conditional expressions composed of AND, NOT and boolean methods;
• use a return statement in both flowchart and code;
• make modifications in a structured and incremental manner;
• find and analyse errors in code, interpret error messages and use this to fix problems (debugging).
• compose and implement a generic algorithm.

Instructions
For this assignment you will need a new ’DodoScenario2’: to be downloaded from the course website2.Throughout the assignment you will also need to answer some questions. The following must behanded in:

• All flowcharts: use pencil and paper, or go to https://www.draw.io/;
• Your code: the file MyDodo . jav contains all your code and must be handed in;

2http://course.cs.ru.nl/greenfoot/

Algorithmic thinking and structured programming (in Greenfoot) 1

https://www.draw.io/
http://course.cs.ru.nl/greenfoot/

Designing Dodo’s moves Assignment 2

• The reflection sheet: complete and hand it in.
You must discuss all other answers with a programming partner. Jot down a short answer on (the as-signment) paper.
There are three types of challenges:

Recommended. Students who need more practice or with limited programming experienceshould complete all of these.
Mandatory. Everyone must complete these.
Excelling. More inquisitive tasks, designed for students who completed 2 star tasks and areready for a bigger challenge.Students who skip 1-star challenges should complete all 3-star challenges.

A note in advance:

• In this assignment you may only make changes to the MyDodo class;
• You may use methods from the MyDodo or the Dodo class, but not the Actor class;
• Teleportation is not permitted: if Mimi needs to get somewhere, she must walk there!

Theory

Theory 2.1: Flowcharts
An algorithm can be visualized in a flowchart. Subsequently, this can be transformed into code.

Figure 1: Flowchart
Decomposing a probleem
Sometimes a problem is very complicated and its solution consists of may steps. If you want to solvesuch a complex problem, you may not know where to start or end up drowning in details. In both casesthe problem may seem bigger than it actually is.

A flowchart can help break down (or decompose) a big problem into smaller subproblems. First youhave to think up a high-level roadmap (or plan) of what has to be done, and in what order. By placingthose steps in a flowchart you can visualize the solution as a whole. Now, each of the subproblems canbe tackled one-by-one, without having to worry about the bigger picture. After solving a particular sub-problem and testing the solution, you do not have to worry about its details anymore. You can use the

Algorithmic thinking and structured programming (in Greenfoot) 2

Designing Dodo’s moves Assignment 2

solution as a building-block in bigger or other problems. This approach, of breaking down a problem, iscalled divide-and-conquer. Of course, when you are done solving all the subproblems, you must checkwhether you have solved the problem as a whole.

What a flowchart looks like
A flowchart has the following components:

Figure 2: Flowchart components
Flowchart criteria

• Each flowchart has a name.
• There are no loose parts ’floating around’ (except the diagram’s name). All components are con-nected by arrows or lines (indicating order).
• There is one initial starting point and one final endpoint, each with a description of its situation.
• An accessor method which yields a result (i.e. gives an answer to a question), has equal initial andfinal situations.
• An activity (rectangle) always has one incoming and one outgoing arrow.
• An conditional expression (diamond) has at least one incoming and at least two outgoing arrows.The outgoing arrows are labelled with their corresponding values.
• The flowchart has no more than seven activities.

Steps for drawing a flowchart
To solve a problem using a flowchart, follow the next steps:

1. Initial situation: Briefly describe (in no more than a few words) what the problem/situation is thatis to be solved.
2. Final situation: When is your problem solved? How do you know that? Describe that in no morethan a few words.
3. Solution strategy: Decide on how you want to resolve the issue. Describe it at a high-level: in nomore that seven steps.

Algorithmic thinking and structured programming (in Greenfoot) 3

Designing Dodo’s moves Assignment 2

4. Break down the problem into sub-problems, each of which can further be broken down into smallersub-subproblems. For each step:
• Choose a suitable name (meaningful, consisting of verbs, and formulated at a command) todescribe it.
• Determine if you can re-use by calling the sub-method rather than all its steps. s
• Determine if steps are repeated. If there is a repetition pattern, use a while.

5. Draw the flowchart.
6. Check:

• Rules: Check if the flowcharts adheres to the ’Flowchart criteria’ (listed above).
• Quality: Walk-through the flowchart to ensure it is correct.

Theory 2.2: Steps for designing code
1. Come up with a global plan (or roadmap) for solving the problem.
2. Draw a flowchart for the solution. Have a look back at ”Steps for drawing a flowchart” in Theory2.1.
3. Translate the flowchart into code. Pay attention to the naming conventions (discussed in assign-ment 1).
4. Add comments to the code.
5. Test the method by dragging an object into the world, right-clicking on the object, and selectingthe method. Using several different situations check if the program does what you expect it to.
6. Debug. Repair errors. Make sure the code does exactly what the flowchart specifies. If not, adjustyour code.
7. Evaluate the solution and reflect on the process. Has the problem been solved? Which improve-ments can you suggest? In the process of reaching the solution, what went right? What could havebeen done better?

Theory 2.3: Sequence of Instructions
In a sequence, the indicated steps or instructions are performed sequentially, one after the other.

Algorithmic thinking and structured programming (in Greenfoot) 4

Designing Dodo’s moves Assignment 2

Theory 2.4: Testing (and debugging)
Test your program after each minor modification to check if it works as expected.

1. Try to locate exactly where an error occurs.
2. If the program doesn’t run at all and you get stuck on compiler errors, have a look back at Theory1.13).
3. Does the program perform incorrectly? Then you must retrace your steps in reverse order:

(a) Make sure your code matches your flowchart. You can print values or steps to the console tohelp trace your code (see Theory 1.14).
(b) Make sure your flowchart matches the solution you came up with. If the code correspondsexactly with your flowchart, but the program doesn’t do what you expect, then you may havea mistake in your flowchart. Analyze your flowchart to determine where you’ve made anyincorrect assumptions. Return to step 2 in Theory 2.2, modify your flowchart, and follow theproceeding steps again.

4. Test different situations. Check that the program deals with unexpected values and boundarysituations appropriately.
• The program such guard for unexpected values: determine what the program should do, likeshow an error and stop the program. Incorrect values could be negative values or very largevalues (outside of Mimi’s world).
• Boundary situations are interesting to test, as many mistakes are made in the first and laststep. Check for boundary situations such as values 0, 1 or the last step: in front of a bor-der/nest.

For example, for the method jump (int distance) , values for distance can’t be just anything.Values to guard for are negative values or a large value which would make Mimi step out of theworld. Boundary values are 0, 1, and the edge of the world (the width of the world - 1).
Make it a habit to do this immediately after each modification. This will help you find any mistakesmuch faster.
Theory 2.5: Comparing

Is equal to
The comparison operator ’==’ checks if two values are equal to each other.
An example

Using ’a == 4’ you can compare if ’a’ is equal to ’4’. The result is either true or false.
Note:

The equals-sign ’=’ (which you use in mathematics) has a different meaning! In code, using ’a = 4’means ’a becomes 4’.
NOT
The negation operator ’ ! ’ means NOT. The result is either true or false.

Algorithmic thinking and structured programming (in Greenfoot) 5

Designing Dodo’s moves Assignment 2

Examples:

• ’ ! borderAhead () ’ checks if there is NO border in front of Mimi.
• ’a != 4’ compares if ’a’ is NOT equal to ’4’.

Theory 2.6: Selections (choices) using if..then..else

The flowchart and code below show the use of an if .. then .. else construct for:
”If a conditional expression is true, then do something. Or else, do something else.”

Flowchart and code explained
• If the condition is true, then step1a is executed.
• Otherwise (the condition is false), then step1b is executed.

Note:
• If nothing needs to happen when the conditional expression is false, then you can just omit the
else-branch.

• All branches must come together before continuing with any other statement.

Theory 2.7: Accessor method
An accessor method provides information about an object’s state. For example, its result can be an int(whole number), boolean (’true’ or ’false’), or String (text).
Flowchart for accessor method
The following is a flowchart corresponding to a boolean accessor method:

Algorithmic thinking and structured programming (in Greenfoot) 6

Designing Dodo’s moves Assignment 2

Figure 3: Flowchart for a boolean accessor method
The flowchart explained:

• First the conditional expression ’Check condition’ in the diamond is checked.
• If the conditional expression is true, then the ’True’ arrow on the left will be followed and the result
true will be returned.

• If the conditional expression is not true, then the ’False’ arrow on the right will be followed andthe result false will be returned.
• After returning a result, a method always terminates (is done). A return is always immediatelyfollowed by the End.
• In an accessor method, the initial and final situation are always equal to each other.

Code for accessor method
The corresponding code looks like this:
boolean methodName () { // a boolean accessor method

if (checkCondition ()){ // check the conditional expression in the diamond

//if the conditional expression is true

return true ; // give the result ’true’

} else { // if the conditional expression is not true

return false ; // give the result ’false’

}
}

The code explained:
• First the value of the conditional expression checkCondition () is determined.
• If the conditional expression is true, then true is returned. After that, the method terminates.
• If the conditional expression is not true, then you jump to else. Here false is returned. After that,the method terminates.

Algorithmic thinking and structured programming (in Greenfoot) 7

Designing Dodo’s moves Assignment 2

• After returning a value, nothing more happens. If you try to execute any code after a return, thecompiler will complain with the following error message: ”unreachable statement”;
• The text to the right ofare comments

Note
An accessor method provides information about an object. It should not change the situation. Therefore,from now on we agree that the initial and final situations of an accessor method are equal to each other.
Theory 2.8: Loading a world from a file
To open a new world within your current scenario follow this example. In the next steps we will openthe world ’worldEgg6CellsAhead’:

1. Right-click on the world (make sure that you click on an empty cell).
2. Choose void populateFromFile () .

Figure 4: Populating the world
3. Go to the folder ’worlds’.
4. Choose the corresponding file, in this example ’worldEgg6CellsAhead.txt’.

Theory 2.9: Repetition is... boring and error-prone: wishing for a generic solution
Have a look at the scenario below. How would you help Mimi find her egg?

Figure 5: Scenario: many moves needed to reach the egg
Naturally, you could solve this problem by merely calling the method move () a certain number oftimes. However, imagine that Mimi would have to take 1003 steps to get to her egg? As a programmer,you would be very busy typing (or copy-pasting) the move (); statement 1003 times. This strategy hasa few drawbacks:

Algorithmic thinking and structured programming (in Greenfoot) 8

Designing Dodo’s moves Assignment 2

• It’s a lot of typing or copy-paste work (which is rather boring).
• You might accidently call the move () method 1004 times instead of 1003 times. The result: yourprogram won’t work correctly.
• Your program only works for that one specific situation. It is not flexible or general. For example,it will not work if 42 steps are needed.

To make your program more general and work in several similar situations, you’ll have to devise asmarter generic algorithm. What you actually want is a repetition:
”While Mimi has not found her egg, she must take a step.”

In the final situation, she’ll be done when she finds her egg. Note that this description has no (’hard-coded’) numbers in it. Such a repetition look is called a while-loop.A general algorithm which can be used in multiple (initial) situations is called generic. This doesnot solve one particular problem, but can be used to solve many similar problems. You will learn moreabout generic algorithms in later assignments.
Theory 2.10: Repetition using while

The flowchart and code below show the use of a while construct to repeat a certain block:
”As long as a particular conditional expression is true, repeat something.”

Flowchart and code explained
• If the condition is true, then doSomething is executed.
• Otherwise (the condition is false) the method is done.

Note:
• The condition is tested at the beginning of the loop.
• A ”NOT” (negation) is often used in the conditional expression of a while , for example, ”NOT border-Ahead”. This is consistent with the way in which you would describe the algorithm in the words:”while something is NOT the case, then ...”. In code, ’!’ means NOT, for example ! borderAhead () .
• The method doSomething () must at some point make the conditional expression become ’false’.At that moment, the method (and thus the repetition) stops. A common mistake when using a
while loop is to forget this, the condition remains ’true’ and the loop never ends. This is called aninfinite loop.

• Using a repetition until a certain condition is met is called a primed sentinel.

Algorithmic thinking and structured programming (in Greenfoot) 9

Designing Dodo’s moves Assignment 2

Theory 2.11: Nesting
The language construct for sequence, selection (choice), and repetition can also be used together invarious combinations. They can be used sequentially, one after the other, or nested in each other. Asequence, selection or repetition can be used in any order. Any one of them can also be used within anyother one.
Example: if .. then .. else nested in a while loop
The following is an example an if .. then .. else statement (selection) nested in a while loop (repeti-tion).

Example: nested if .. then .. else statements
A nested if .. then .. else statement tests several cases simultaneously.

Simplified nested if .. then .. else, using else .. if

This type of if .. then .. else nesting can simplified using an else .. if. The else and the if are com-bined and becomes:

Algorithmic thinking and structured programming (in Greenfoot) 10

Designing Dodo’s moves Assignment 2

Figure 6: A nested if .. then .. else using else if

• If ’Check A?’ is ’True’ then ’step1’ is executed;
• Else (so A is ’False’), if ’Check B?’ is ’True’ then ’step2’ will be executed.
• Else (so A and B are both ’False’), if ’Check C?’ is ’True’ then ’step3’ will be executed.
• Else (so A, B and C are all ’False’), then ’step4’ will be executed.

Note: The last branch can use either an else or an else if (with another condition, say checkD). How-ever, these do have another meaning! The code after an else if will only be executed if checkD returnstrue.

Algorithmic thinking and structured programming (in Greenfoot) 11

Designing Dodo’s moves Assignment 2

Challenges

Please read Theory 2.1: Flowcharts.

Please read Theory 2.2: Steps for designing code.

Please read Theory 2.3: Sequence of Instructions.

Please read Theory 2.4: Testing (and debugging).

Challenge 2.1: Sequence of instructions: gotoEgg
Our MyDodo, Mimi, has lost her egg. Can you help her find it?

Figure 7: First scenario: Help Mimi find her egg
a) Right-click on Mimi. Using these methods (not the methods in the inherited lists), develop a strat-egy for Mimi to go to her egg and sit on it.
b) Fill in the missing parts A,B,C,D (in the flowchart) and E and F (in the code):

c) Open the code for MyDodo in the editor. Modify the gotoEgg () method accordingly. Also correctlydescribe the initial and final situation as (JavaDoc) comments.
d) Test your method. Tip: If it doesn’t work correctly or if you get a compiler-error, then follow thesteps described in the ’Debugging’ theory block 2.4.

Algorithmic thinking and structured programming (in Greenfoot) 12

Designing Dodo’s moves Assignment 2

Challenge 2.2: A sequence with multiple instructions
In this scenario, Mimi is further away from her egg. Can you help Mimi find her egg this time?

Figure 8: Second scenario: Help Mimi find her egg again
a) Adjust the world so that it matches figure 8.
b) Can you help Mimi find her egg this time? (Again, you may not use methods from the inheritedlist). Modify the flowchart from Challenge 2.1 and corresponding code in MyDodo’s gotoEgg ()method.
c) Also change the comments appropriately.
d) Test your method.

Please read Theory 2.5: Comparing.

Please read Theory 2.6: Selections (choices) using if..then..else.

Please read Theory 2.7: Accessor method.

Challenge 2.3: Mimi can’t walk through fences
In assignment 1 we saw that Mimi can’t step outside of the world. We will now have a look at the method
boolean canMove () again.

a) Have a look at the following flowchart and corresponding code for canMove () :

Algorithmic thinking and structured programming (in Greenfoot) 13

Designing Dodo’s moves Assignment 2

b) The way she is now programmed, Mimi doesn’t seem to care about the fences. She walks rightthrough them! Place a fence in the world and see for yourself!
c) Call the boolean fenceAhead () method. What does it do? Call the method with a fence in frontof Mimi, and again without a fence in front of Mimi.
d) Change the conditional expression (the diamond) in the flowchart to ensure that Mimi can’t walkthrough fences and can’t step out of the world. Tip: In code ’AND’ is written as ’&&’, ’OR’ as ’ || ’, ’NOT’as ’ ! ’.
e) Modify the code and its comments.
f) Test your method. Tip: If it doesn’t work correctly or if you get a compiler-error, then follow thesteps described in the ’Debugging’ theory block 2.4.

Please read Theory 2.8: Loading a world from a file.

Challenge 2.4: Writing your own sequence: climbOverFence ()

We’re now going to teach Mimi something new. If she encounters an obstacle (for example a fence), sheMimi should climb over it.

Figure 9: Scenario: Climb over the fence
We do this as follows:

a) Open the ”worldFenceObstructing” world. Tip: To load another world, see Theory 2.8.
b) Mimi will stop if she encounters a fence. Check this. If Mimi walks right through the fence, thencheck if you did Challenge 2.3 correctly before continuing.
c) If Mimi encounters a fence, we want her to climb over it, as in figure 9. Complete the followingstrategy:

Algorithmic thinking and structured programming (in Greenfoot) 14

Designing Dodo’s moves Assignment 2

i. turn to the left
ii. take a step

iii. ...
d) Make sure Mimi is facing East again when she is finished.
e) Write a method in climbOverFence () which matches your strategy (not using any methods fromthe inherited list). Describe the initial and final situation in comments.
f) Test your method.

Challenge 2.5: Find grain
Mimi is near-sighted. She’s hungry and looking for grain. However, she can only spot a grain if she isstanding on top of it. Can you help her figure out if there is grain in front of her?

a) Have a look at the flowchart and code for the method grainAhead () . This method returns true ifthere is a grain in the cell in front of Mimi, and false otherwise. Note that:
• This accessor method should have a final situation identical to the initial situation. To makeit easier to use this method for other tasks, Mimi must return to her original position (andfacing the same direction).
• A return is the very last thing that can be called in a method (the method stops after that).So, Mimi must go back to her initial situation before the return .
• Parts B, C, E and F in the code and flowchart may consist of more than one statement.

Algorithmic thinking and structured programming (in Greenfoot) 15

Designing Dodo’s moves Assignment 2

b) Fill in the blanks A through F (in both the flowchart and the code).
c) Write and test the method grainAhead () .

Please read Theory 2.9: Repetition is... boring and error-prone: wishing for a generic
solution.

Please read Theory 2.10: Repetition using while.

Challenge 2.6: Repeating using while: generic gotoEgg ()

Your mission is:
”Help Mimi find her egg, no matter how far away she is from it”.

Your solution must be generic. The following initial situation is given:
• Mimi is 0 or more cells away from her egg, but you don’t know exactly how many;
• Mimi is facing in the correct direction (she does not have to turn, she only has to take a certainnumber of steps forward);
• There is nothing in between Mimi and her egg (for example, there is no fence blocking her way);
• Mimi has found her egg if she is standing in the same cell as the egg.

Algorithmic thinking and structured programming (in Greenfoot) 16

Designing Dodo’s moves Assignment 2

Figure 10: Scenario: a few moves needed to reach the egg
We are going to work on this problem step-by-step:

a) Open the world named ”worldEgg6CellsAhead”.
b) Argue, in terms of a repetition block and conditional expression, that the following generic algo-rithm is correct:”While Mimi has not found her egg, she must step forwards.”
c) Have a look at the flowchart in figure 11. What must be repeated? Fill in B.

Figure 11: Flowchart ”While the egg has not been found, step forwards.”
d) What is the conditional expression in A?
e) Now modify the code for MyDodo ’s method gotoEgg () so that it is generic. It should look somethinglike figure 12. Note that ’!’ in code means not. Copy the code and fill in C and D.

Figure 12: Flowchart ”While the egg has not been found, step forwards.”
f) Modify the comments above the gotoEgg () method accordingly.
g) Test your program.

Algorithmic thinking and structured programming (in Greenfoot) 17

Designing Dodo’s moves Assignment 2

Challenge 2.7: Walk to the edge of the world
Write a method that makes Mimi walk to any edge of the world. Her initial position is arbitrary: she canbe standing anywhere and facing any direction.

a) Load the world: ”worldEmpty” (See Theory 2.8).
b) Fill in the blanks in the flowchart.

Figure 13: Flowchart for walkToWorldEdge ()
c) Write the corresponding method void walkToWorldEdge () . Include comments.
d) Test your method by right-clicking on Mimi. Repeat with Mimi in different positions in the world.
e) Does your code also work if Mimi is facing any other direction (West or South)? If necessary, modifythe comments to properly explain what Mimi can do.

Please read Theory 2.11: Nesting.

Challenge 2.8: Combining sub-methods: walkToWorldEdgeClimbingOverFences ()

We are now going to combine two of your methods so that Mimi can walk across her world, avoidingany fences she comes across (see figure 14).
• climbOverFence () (from challenge 2.4)
• walkToWorldEdge () (from challenge 2.7)

Figure 14: Scenario: Walk to edge of the world, climbing over fences

Algorithmic thinking and structured programming (in Greenfoot) 18

Designing Dodo’s moves Assignment 2

a) Modify your flowchart for walkToWorldEdge () (from challenge 2.7) so that Mimi climbs over anyfences she encounters. Also rename your flowchart.
b) Write a method walkToWorldEdgeClimbingOverFences () . You may assume there is always anempty cell in between two fences. Tip: You can call your climbOverFence method using: climbOverFence ();
c) Test your method.

Challenge 2.9: Giving compliments
When Mimi completes her task, we want to give her a compliment on her job well-done. Modify thecode for walkToEdgeOfWorldClimbingOverFences () to show a compliment. Use the method
showCompliment (String compliment) as follows:

Figure 15: Example code and its result for giving a compliment

Challenge 2.10: Pick up grains and print coordinates
Your mission is:

”Have Mimi walk across the row, picking up any grain she finds. Print the coordinates of each of thegrains.”

Figure 16: Pick up grains in this row and print their coordinates
• Load the world ’worldGrainsInRow’.
• In the console, print the coordinates of each of the grains in Mimi’s row. Tip: you can use int getX ()and int getY () to determine the coordinates of Mimi. Besides, have a look at Mimi’s grain-relatedmethods.
• Test your code. Does it also print the coordinates in the last cell?

Algorithmic thinking and structured programming (in Greenfoot) 19

Designing Dodo’s moves Assignment 2

Reflection
In this assignment you have been introduced to algorithms. In an algorithm you describe how a particu-lar task should be done. You explain each step, choice or repetition very precisely. In the last challengeyou came up with your own algorithm, visualised it in a flowchart and wrote and tested the code. Oneof the most important steps in becoming good at anything is to evaluate and reflect on what you didand how it went:

Result
I know my solution works because . . .I am proud of my solution because . . .I could improve my solution by . . .

Method
My approach was good because . . .What I could do better next time is . . .

Fill the following table with smileysindicating how things went. I can do it
I did it a bit but didn’t fully get it
I didn’t get it at all

I can come up with a generic solution to a problem

I can devise an algorithm as a sequence of steps, choices(if .. then .. else) or repetitions (while)
I can write new code in a structured manner by visualising an algorithmin a flowchart and then translate this into code
I can combine existing solutions (sub-methods) to solve a more complexproblem
I can make code changes incrementally by making small changes andtesting directly after every minor modification

Algorithmic thinking and structured programming (in Greenfoot) 20

Designing Dodo’s moves Assignment 2

Diagnostic Test
1. Assume MyDodo has the following method: boolean foundAllEggs () , which indicates whetherMimi has found all of her eggs. Which of the following is true?

(a) This method has a boolean parameter.
(b) The initial and final situations of this method are equal to each other.
(c) This method has a boolean as a result.
(d) This is a mutator method.

2. Name two advantages for using sub-methods.
3. Give two reasons for testing immediately after each minor code change.
4. Explain, in your own words, what the initial and final situations described in the flowchart areuseful in programming.
5. Have a look at the flowchart in figure 17. Write the code for this silly walk. For which initial situa-tions will the program stop? Include a description in your (JavaDoc) comments.

Figure 17: Flowchart for silly walk

Saving and Handing in
You have just finished the assignment. Save your work! You will need this for future assignments. In theGreenfoot menu at the top of the screen, select ’Scenario’ and then ’Save’. You now have all the scenariocomponents in one folder. The folder has the name you chose when you selected ’Save As ...’.
Handing in
Hand in the following:

• Your name(s): you and your partner
• Your code: The java file MyDodo . jav;
• Flowcharts: paste (photo’s of) your flowcharts in a Word document;
• The reflection sheet: complete and hand it in.

Algorithmic thinking and structured programming (in Greenfoot) 21

	Introduction
	Learning objectives
	Instructions
	Theory
	2.1 Flowcharts
	2.2 Steps for designing code
	2.3 Sequence of Instructions
	2.4 Testing (and debugging)
	2.5 Comparing
	2.6 Selections (choices) using if..then..else
	2.7 Accessor method
	2.8 Loading a world from a file
	2.9 Repetition is... boring and error-prone: wishing for a generic solution
	2.10 Repetition using while
	2.11 Nesting

	Challenges
	2.1 Sequence of instructions: [language=Java]|gotoEgg|
	2.2 A sequence with multiple instructions
	2.3 Mimi can't walk through fences
	2.4 Writing your own sequence: [language=Java]|climbOverFence()|
	2.5 Find grain
	2.6 Repeating using [language=Java]|while|: generic [language=Java]|gotoEgg()|
	2.7 Walk to the edge of the world
	2.8 Combining sub-methods: [language=Java]|walkToWorldEdgeClimbingOverFences()|
	2.9 Giving compliments
	2.10 Pick up grains and print coordinates

	Reflection
	Diagnostic Test
	Saving and Handing in

